import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import fetch_california_housing data = fetch_california_housing() df = pd.DataFrame(data.data, columns=data.feature_names) df["Target"] = data.target print("DataFrame shape:", df.shape) print(df.describe().T) print("Missing values per column:\n", df.isnull().sum()) corr_matrix = df.corr() plt.figure(figsize=(10, 6)) sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f") plt.title("Feature Correlation Heatmap") plt.show() sns.pairplot(df[["MedInc", "HouseAge", "AveRooms", "Target"]], diag_kind="kde") plt.show()