import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn import tree data = load_breast_cancer() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) clf = DecisionTreeClassifier(random_state=42) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f"Model Accuracy: {accuracy * 100:.2f}%") new_sample = np.array([X_test[0]]) prediction = clf.predict(new_sample) prediction_class = "Benign" if prediction == 1 else "Malignant" print(f"Predicted Class for the new sample: {prediction_class}") plt.figure(figsize=(12, 8)) tree.plot_tree( clf, filled=True, feature_names=data.feature_names, class_names=data.target_names ) plt.title("Decision Tree - Breast Cancer Dataset") plt.show()